Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Sci Rep ; 14(1): 8884, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632323

RESUMO

Millimeter-wave (mmWave) massive multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) is proven to be a primary technique for sixth-generation (6G) wireless communication networks. However, the great increase in users and antennas brings challenges for interference suppression and resource allocation for mmWave massive MIMO-NOMA systems. This study proposes a spectrum-efficient and fast convergence deep reinforcement learning (DRL)-based resource allocation framework to optimize user grouping and allocation of subchannel and power. First, an enhanced K-means grouping algorithm is proposed to reduce the multi-user interference and accelerate the convergence. Then, a dueling deep Q-network (DQN) structure is proposed to perform subchannel allocation, which further improves the convergence speed. Moreover, a deep deterministic policy gradient (DDPG)-based power resource allocation algorithm is designed to avoid the performance loss caused by power quantization and improve the system's achievable sum-rate. The simulation results demonstrate that our proposed scheme outperforms other neural network-based algorithms in terms of convergence performance, and can achieve higher system capacity compared with the greedy algorithm, the random algorithm, the RNN algorithm, and the DoubleDQN algorithm.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38517627

RESUMO

Based on the spatially correlated effects of air pollution on regional innovation, theoretical hypotheses are proposed, and this paper employs a spatial Durbin model to conduct empirical tests using panel data from 267 Chinese cities from 2003 to 2019, and investigates the mediating effect of human capital. Research has shown that (1) air pollution significantly reduces regional innovation output and has a negative spatial spillover effect significantly in the short term; (2) in the process of regional innovation impacted by air pollution, human capital acts as a mediator role; and (3) analysis of heterogeneity reveals that, from the regional perspective, air pollution has significantly damaged regional innovation in eastern and middle cities, but not significantly influences western cities, and in terms of innovation types, there is a stronger detrimental effect on invention patents exerted by air pollution compared to non-innovation patents. The study's findings provide theoretical and empirical evidence to strengthen environmental governance, enhance regional innovation and promote the coordinated development of regional innovation.

3.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503102

RESUMO

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Solo , Medição de Risco/métodos , China , Poluentes do Solo/análise , Cádmio/análise
4.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400350

RESUMO

Most automated vehicles (AVs) are equipped with abundant sensors, which enable AVs to improve ride comfort by sensing road elevation, such as speed bumps. This paper proposes a method for estimating the road impulse features ahead of vehicles in urban environments with microelectromechanical system (MEMS) light detection and ranging (LiDAR). The proposed method deploys a real-time estimation of the vehicle pose to solve the problem of sparse sampling of the LiDAR. Considering the LiDAR error model, the proposed method builds the grid height measurement model by maximum likelihood estimation. Moreover, it incorporates height measurements with the LiDAR error model by the Kalman filter and introduces motion uncertainty to form an elevation weight method by confidence eclipse. In addition, a gate strategy based on the Mahalanobis distance is integrated to handle the sharp changes in elevation. The proposed method is tested in the urban environment. The results demonstrate the effectiveness of our method.

5.
Exp Mol Med ; 56(2): 441-452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383581

RESUMO

Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.


Assuntos
Ferroptose , Helicobacter pylori , Neoplasias Gástricas , Humanos , Citotoxinas , Éteres Fosfolipídicos
6.
Adv Sci (Weinh) ; 11(1): e2305110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986658

RESUMO

Traditional synthesis methods of platinum-rare earth metal (Pt-RE) alloys usually involve harsh conditions and high energy consumption because of the low standard reduction potentials and high oxophilicity of RE metals. In this work, a one-step strategy is developed by rapid Joule thermal-shock (RJTS) to synthesize Pt-RE alloys within tens of seconds. The method can not only realize the regulation of alloy size, but also a universal method for the preparation of a family of Pt-RE alloys (RE = Ce, La, Gd, Sm, Tb, Y). In addition, the energy consumption of the Pt-RE alloy preparation is only 0.052 kW h, which is 2-3 orders of magnitude lower than other reported methods. This method allows individual Pt-RE alloy to be embedded in the carbon substrate, endowing the alloy catalyst excellent durability for oxygen reduction reaction (ORR). The performance of alloy catalyst shows negligible decay after 20k accelerated durability testing (ADT) cycles. This strategy offers a new route to synthesize noble/non-noble metal alloys with diversified applications besides ORR.

7.
PNAS Nexus ; 2(12): pgad397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047040

RESUMO

The impact of industrial chemical components of ambient fine particles (e.g. PM2.5) on cardiovascular health has been poorly explored. Our study reports for the first time the associations between human exposure to complex plastic additive (PA) components of PM2.5 and prolongation of heart rate-corrected QT (QTC) interval by employing a screening-to-validation strategy based on a cohort of 373 participants (136 in the screening set and 237 in the validation set) recruited from 7 communities across China. The high-throughput airborne exposome framework revealed ubiquitous occurrences of 95 of 224 target PAs in PM2.5, totaling from 66.3 to 555 ng m-3 across the study locations. Joint effects were identified for 9 of the 13 groups of PAs with positive associations with QTC interval. Independent effect analysis also identified and validated tris(2-chloroisopropyl) phosphate, di-n-butyl/diisobutyl adipate, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde as the key exposure markers for QTC interval prolongation and changes of selected cardiovascular biomarkers. Our findings highlight the important contributions of airborne industrial chemicals to the risks of cardiovascular diseases and underline the critical need for further research on the underlying mechanisms, toxic modes of action, and human exposure risks.

8.
MedComm (2020) ; 4(6): e435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077249

RESUMO

The objective of this multicenter, single-arm trial (ChiCTR1900022293) was to explore the efficacy and safety of neoadjuvant therapy with epirubicin, cyclophosphamide, and pyrotinib followed by docetaxel, trastuzumab, and pyrotinib (ECPy-THPy) in the treatment of patients with stage II-III HER2-positive breast cancer. The present study enrolled patients with stage II-III HER2-positive breast cancer. Epirubicin and cyclophosphamide were administrated for four 21-day cycles, followed by four cycles of docetaxel and trastuzumab. Pyrotinib was taken orally once per day throughout the treatment period. The primary endpoint was total pathological complete response (tpCR, ypT0/is ypN0) rate in the modified intention-to-treat (mITT) population. In total, 175 patients were included. The tpCR rate was 68.6% (95% CI, 60.7-75.8%), while the objective response rate was 89.1%. In the post-hoc subgroup analysis, no association between clinical characteristics and the tpCR rate was observed. The most common grade ≥3 adverse events were diarrhea (54.3%), followed by white blood cell count decreased (5.1%), and neutrophil count decreased (4.6%). In conclusion, the neoadjuvant regimen with ECPy-THPy showed promising pathological response and clinical benefits with an acceptable safety profile in patients with stage II-III HER2-positive breast cancer.

9.
Adv Mater ; : e2307661, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994613

RESUMO

Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt3 Ga (Pm 3 ¯ $\bar{3}$ m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt3 Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt3 Ga (Pm 3 ¯ $\bar{3}$ m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mgPt -1 and 5.36 mA cm-2 , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.

10.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37960899

RESUMO

Probiotics have been demonstrated to lower total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in individuals with mild hypercholesterolemia. Our previous study found that intervention with Bacillus subtilis R-179 and Enterococcus faecium R-026, well-known probiotics, improved obesity-associated dyslipidemia through ameliorating the gut microbiota, but similar studies on hypercholesterolemia have not been reported to date. Here, we investigated the therapeutic effect of live combined B. subtilis R-179 and E. faecium R-026 (LCBE) in a C57BL/6 mouse model of hypercholesterolemia. A total of 40 mice were administered with a high-cholesterol diet (containing 1.2% cholesterol) to establish a state of hypercholesterolemia for 4 weeks. Then, mice were divided into one model group (group M) and three treatment groups (n = 10 per group), which were administered with LCBE at 0.023 g/mouse/day (group L) or 0.230 g/mouse/day (group H), or atorvastatin 0.010 g/kg/day (group A), for 5 weeks while on a high-cholesterol diet. LCBE at high doses significantly alleviated the symptoms of group M and reduced serum TC, LDL-C, and lipopolysaccharide (LPS). LCBE improved liver steatosis and adipocyte enlargement caused by a high-cholesterol diet. In addition, the administration of LCBE regulated the change in gut microbiota and diversity (Shannon index). Compared with group M, the relative abundance of Actinobacteriota, Colidextribacter, and Dubosiella dramatically decreased in the treatment groups, which were positively correlated with serum TC and LPS. These findings indicated that the mechanism of action of LCBE in treating hypercholesterolemia may be modulation of the gut microbiota. In conclusion, LCBE ameliorated lipid accumulation, reduced inflammation, and alleviated the gut microbiota imbalance in hypercholesterolemic mice. These findings support the probiotic role of LCBE as a clinical candidate for the treatment of hypercholesterolemia.


Assuntos
Enterococcus faecium , Microbioma Gastrointestinal , Hipercolesterolemia , Probióticos , Camundongos , Animais , Bacillus subtilis , LDL-Colesterol/farmacologia , LDL-Colesterol/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Colesterol , Probióticos/farmacologia
11.
Int J Biol Sci ; 19(14): 4689-4708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781040

RESUMO

Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-associated protein that plays a crucial role in mitosis. Despite initial reports suggesting a potential involvement of NUSAP1 in tumor progression and malignant cell regulation, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value for prognosis and immunotherapy response across different cancer types. In this study, we analyze NUSAP1 mRNA and protein expression levels in various human normal and tumor tissues, using data from TCGA, GTEx, CPTAC, HPA databases, and clinical samples. Our findings reveal that NUSAP1 is highly expressed in multiple tumor tissues across most cancer types and is primarily expressed in malignant and immune cells, according to single-cell sequencing data from the TISCH database. Prognostic analysis based on curated survival data from the TCGA database indicates that NUSAP1 expression levels can predict clinical outcomes for 26 cancer types. Furthermore, Gene Set Enrichment Analysis (GSEA) suggests that NUSAP1 promotes cell proliferation, tumor cell invasion, and regulation of anti-tumor response. Analysis of immune score, immune cell infiltration, and anti-cancer immunity cycle using ESTIMATE, TIMER, and TIP databases show that high NUSAP1 levels are associated with low CD4+T and NKT cell infiltration but high Th2 and MDSC infiltration, inversely correlated with antigen-presenting molecules and positively correlated with a variety of immune negative regulatory molecules. Notably, patients with melanoma, lung, and kidney cancer with high NUSAP1 expression levels have shorter survival times and lower immunotherapy response rates. Using Cmap analysis, we identify Entinostat and AACOCF3 as potential inhibitors of NUSAP1-mediated pro-oncogenic effects. In vitro and in vivo experiments further confirm that NUSAP1 knockdown significantly reduces the proliferation ability of A549 and MCF-7 cells. Overall, our study highlights the potential of NUSAP1 expression as a novel biomarker for predicting prognosis and immuno-therapeutic efficacy across different human cancers and suggests its potential for developing novel antitumor drugs or improving immunotherapy.


Assuntos
Neoplasias Renais , Proteínas Associadas aos Microtúbulos , Humanos , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/metabolismo , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia , Microambiente Tumoral/genética
12.
Front Oncol ; 13: 1220518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781204

RESUMO

Background: The outbreaks of infectious diseases, such as coronavirus disease 2019 (COVID-19), have seriously affected the normal work and life of the public, as well as the normal diagnosis and treatment of other diseases due to their strong infectivity, high population susceptibility, and diverse clinical manifestations. Breast and thyroid specialists in non-hotspot epidemic areas of COVID-19 must consider factors, including epidemic prevention and control, breast and thyroid cancers and diseases diagnosis and treatment, and access to medical resources to make a reasonable treatment choice and optimize the treatment process. Methods: A cohort study was designed under our center's epidemic prevention and control strategy. The study was conducted between February 3 and April 19, 2020, to explore the safety of clinical diagnosis and treatment of breast and thyroid cancer patients during the epidemic. All the outpatients, inpatients, day-time chemotherapy patients, targeted therapy patients, and relevant medical staff in the observation period in the Department of Breast and Thyroid Surgery in Southwest Hospital in Chongqing municipality, China, were included to investigate the detection and infection rate of COVID-19 and suspected patients. Results: During the observation period, 27,117 patients were admitted to the outpatient unit. We performed 394 inpatient surgeries and 411 day-time surgeries. In our center, 1,046 and 663 patients received day-time chemotherapy and targeted therapy, respectively. All the patients were diagnosed and treated promptly and safely. Three suspected COVID-19 patients were identified in the outpatient unit. Healthcare staff achieved a "zero" infection of COVID-19. Conclusion: The spread and cross-infection of COVID-19 can be avoided in non-hotspot epidemic areas based on scientific prevention and control, and cancer patients can be diagnosed and treated on time. The prevention and control measure implemented in the COVID-19 epidemic for diagnosing and treating cancer patients was effective and can be referenced for other infectious disease outbreaks.

13.
Angew Chem Int Ed Engl ; 62(47): e202308070, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37779100

RESUMO

Nitrogen-coordinated iron (Fe-N4 ) materials represent the most promising non-noble electrocatalysts for the cathodic oxygen reduction reaction (ORR) of fuel cells. However, molecular-level structure design of Fe-N4 electrocatalyst remains a great challenge. In this study, we develop a novel Fe-N4 conjugated organic polymer (COP) electrocatalyst, which allows for precise design of the Fe-N4 structure, leading to unprecedented ORR performance. At the molecular level, we have successfully organized spatially proximate iron-pyrrole/pyrazine (FePr/Pz) pairs into fully conjugated polymer networks, which in turn endows FePr sites with firmly covalent-bonded matrix, strong d-π electron coupling and highly dense distribution. The resulting pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) COP electrocatalyst exhibits superior performance compared to most ORR electrocatalysts, with a half-wave potential of 0.933 V and negligible activity decay after 40,000 cycles. When used as the cathode electrocatalyst in a hydroxide exchange membrane fuel cell, the Pz-FeTPr COP achieves a peak power density of ≈210 mW cm-2 . We anticipate the COP based Fe-N4 catalyst design could be an effective strategy to develop high-performance catalyst for facilitating the progress of fuel cells.

14.
Microsyst Nanoeng ; 9: 126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829160

RESUMO

Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.

15.
ACS Omega ; 8(39): 36597-36603, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810663

RESUMO

Four ruthenium complexes were used as catalysts for the N-methylation of amines using methanol as the C1 source under weak base conditions. The (DPEPhos)RuCl2PPh3(1a) catalyst showed the best catalytic performance (0.5 mol %, 12 h). The deuterium labeling and control experiments suggested the reaction via the Ru-H mechanism. This study provides a new ruthenium catalyst system for N-methylation with methanol under weak base conditions.

16.
Int J Surg ; 109(12): 4162-4172, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37720943

RESUMO

BACKGROUND: The clinical benefit of conversion surgery following immunochemotherapy in patients with stage IV gastric cancer (GC) remains uncertain. This study aims to clarify the clinical outcomes of conversion surgery for such patients. METHODS: This retrospective cohort study enroled consecutive patients with stage IV GC treated with a combination of immune checkpoint inhibitors and chemotherapy and/or anti-human epidermal growth factor receptor-2 targeted therapy as first-line therapy. Cumulative survival curves were estimated using Kaplan-Meier method. Logistic regression and Cox regression analyses were conducted to identify factors associated with conversion surgery and survival, respectively. RESULTS: Among the 136 patients included in the study. The disease control rate was 72.1% (98/136), with objective response rate in 58.8% (80/136) and complete response rate in 5.9% (8/136). Among 98 patients with disease control, 56 patients underwent palliative immunochemotherapy with median progression-free survival (PFS) and overall survival at 9.2 and 16.2 months, respectively; the remaining 42 patients underwent conversion surgery, yielding an unreached median PFS over a 19.0-month median follow-up, accompanied by 1-year overall survival and PFS rates of 96.6% and 89.1%, respectively. The R0 resection rate reached 90.5% (38/42). 7 out of 42 patients achieved pathological complete response, of whom three patients demonstrated human epidermal growth factor receptor-2 positivity. No serious complications leading to death were observed during the perioperative period. Multivariate analysis indicated that programmed death ligand 1 combined positive score greater than or equal to 5 (odds ratio, 0.22; 95% CI, 0.08-0.57; P =0.002) favored successful conversion surgery, while signet ring cell carcinoma (hazard ratio, 6.29; 95% CI, 1.56-25.36; P =0.010) was the poor prognostic factor associated with survival in patients who underwent conversion surgery. CONCLUSIONS: Conversion surgery holds the potential for significant survival benefits in stage IV GC patients who have achieved a favourable clinical response to immunochemotherapy. Individuals with signet ring cell carcinoma may experience increased post-conversion surgery recurrence.


Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Gastrectomia/métodos , Receptores ErbB/uso terapêutico
17.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653869

RESUMO

Maize, as a glycophyte, is hypersensitive to salinity, but the salt response mechanism of maize remains unclear. In this study, the physiological, biochemical, and molecular responses of two contrasting inbred lines, the salt-tolerant QXH0121 and salt-sensitive QXN233 lines, were investigated in response to salt stress. Under salt stress, the tolerant QXH0121 line exhibited good performance, while in the sensitive QXN233 line, there were negative effects on the growth of the leaves and roots. The most important finding was that QXH0121 could reshift Na+ from shoots into long roots, migrate excess Na+ in shoots to alleviate salt damage to shoots, and also improve K+ retention in shoots, which were closely associated with the enhanced expression levels of ZmHAK1 and ZmNHX1 in QXH0121 compared to those in QXN233 under salt stress. Additionally, QXH0121 leaves accumulated more proline, soluble protein, and sugar contents and had higher SOD activity levels than those observed in QXN233, which correlated with the upregulation of ZmP5CR, ZmBADH, ZmTPS1, and ZmSOD4 in QXH0121 leaves. These were the main causes of the higher salt tolerance of QXH0121 in contrast to QXN233. These results broaden our knowledge about the underlying mechanism of salt tolerance in different maize varieties, providing novel insights into breeding maize with a high level of salt resistance.

18.
Nat Commun ; 14(1): 6101, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773252

RESUMO

The rural energy transition is critical in China's efforts to achieve carbon neutrality and improve air quality. However, the costs and health benefits associated with the transition to carbon neutrality remain unclear. Here we explore the cost-effective transition pathways and air quality-related health impacts using an integrated energy-air quality-health modeling framework. We find that decarbonizing rural cooking and heating would triple contemporary energy consumption from 2014 to 2060, considerably reducing energy poverty nationwide. By 2060, electric cooking ranges and air-to-air heat pumps should be widely integrated, costing an additional 13 billion USD nationally in transformation costs, with ~40% concentrated in Shandong, Heilongjiang, Shanxi and Hebei provinces. Rural residential decarbonization would remarkably improve air quality in northern China, yielding substantial health co-benefits. Notably, monetized health benefits in most provinces are projected to offset transformation costs, except for certain relatively lower-development southwestern provinces, implying more financial support for rural residents in these areas will be needed.


Assuntos
Poluição do Ar , Material Particulado , Material Particulado/análise , Carbono , Poluição do Ar/análise , China , Pobreza
19.
Nanotechnology ; 34(48)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37625396

RESUMO

Extensive investigations have been devoted to nitrogen-doped carbon materials as catalysts for the oxygen reduction reaction (ORR) in various conversion technologies. In this study, we introduce nitrogen-doped carbon materials with hollow spherical structures. These materials demonstrate significant potential in ORR activity within alkaline media, showing a half-wave potential of 0.87 V versus the reversible hydrogen electrode (RHE). Nitrogen-doped hollow carbon spheres (N-CHS) exhibit unique characteristics such as a thin carbon shell layer, hollow structure, large surface area, and distinct pore features. These features collectively create an optimal environment for facilitating the diffusion of reactants, thereby enhancing the exposure of active sites and improving catalytic performance. Building upon the promising qualities of N-CHS as a catalyst support, we employ heme chloride (1 wt%) as the source of iron for Fe doping. Through the carbonization process, Fe-N active sites are effectively formed, displaying a half-wave potential of 0.9 V versus RHE. Notably, when implemented as a cathode catalyst in zinc-air batteries, this catalyst exhibits an impressive power density of 162.6 mW cm-2.

20.
J Clin Lab Anal ; 37(13-14): e24955, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37571860

RESUMO

BACKGROUND: This study aimed to assess the commutability of frozen pooled human serum (PHS), high concentration of Immunoglobulin M (IgM) pure diluted materials (HPDM), commercialized pure materials (CPM), and dilutions of ERM-DA470k/IFCC in IgM detection using the CLSI and IFCC approaches, to support standardization or harmonization of IgM measurement. METHODS: Twenty-four serum samples, relevant reference materials (PHS, HPDM, CPM), and different ERM-DA470k/IFCC dilutions were analyzed in triplicate using six routine methods. The commutability of the relevant reference materials was carried out following CLSI EP30-A and IFCC bias analysis. RESULTS: According to the CLSI approach, low, medium, and high concentrations of PHS, HPDM, and CPM were commutable on 10, 13, 15, 13, and 8 of 15 assay combinations, respectively. Using the IFCC approach, low, medium, and high concentrations of PHS, HPDM, and CPM were commutable on 10, 11, 9, 15, and 10 of 15 assay combinations, respectively. The ERM-DA470k/IFCC dilutions with D-PBS and RPMI-1640 Medium were commutable on 13 of 15 assay combinations according to CLSI and were commutable on all 15 assay combinations using IFCC approach. CONCLUSIONS: High concentration of PHS were commutable on all six detection systems using the CLSI approach. Low and medium concentration of PHS showed unsatisfied commutability. HPDM, not CPM have good commutability, has the potential to become reference materials. ERM-DA470k/IFCC diluted with different medium showed different commutability.


Assuntos
Soro , Humanos , Padrões de Referência , Testes de Coagulação Sanguínea , Imunoglobulina M , Técnicas de Diluição do Indicador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...